Lecture 10: Concentrations and Colligative Properties

4 Ways to Express Mixture Density (aka Concentration)

- 3 kinds of "particle density"
 - Molarity (n/V)
 - $\frac{Molarity}{\text{1L of solute+solvent}}$
 - Useful for stoichiometry calculations
 - Molality (n/m)
 - $\frac{Molality}{\text{1kg of solvent}} = \frac{\text{moles of solute}}{\text{1kg of solvent}}$
 - Useful for boiling/freezing point calculations
 - o Mole Fraction (decimal # between 0-1)
 - Mole Fraction = moles of substance total moles (of all substances)
 - Useful for partial pressure calculations
- 1 kind of "mass density"
 - o Weight Percent (0 − 100%)
 - Weight % grams of subtance total grams (of all substances)
 - Useful for chemical analysis of the unknowns

Clicker Question:

	<u>Solute</u>	<u>Solvent</u>	
1.	Na ⁺ and Cl ⁻ ions	Water	(correct) the Na and Cl ions separate
2.	Water	Na ⁺ and Cl ⁻ ions	(wrong) water = solvent since there is more of it
3.	NaCl (s)	Water	(wrong) NaCl is not in solid form in the solution
4.	Water	NaCl (s)	(wrong) water = solvent since there is more of it

[&]quot;solution" = "mixture" in liquid phase

In a Solution:

- 1. BPE: Boiling Point = Higher
 - a. Solute increases the BP of the solvent
 - i. $\Delta T_{bp} = i m_{solute} K_{bp}$
 - = (effective molality) (solvent factor)
 - =(# of ions) (moles of solute) (solvent factor given or looked up)
 - =change in boiling temperature caused by the solute
 - 1. Add this number to the Top(solvent)
 - b. Solute increase the BP by lowering the vapor pressure (Raoult's Law)
 - i. $P_{\text{solvent}} = X_{\text{solvent}} P_{\text{solvent}}^{\text{o}}$

fraction of surface taken up by solvent = (fraction of surface taken up by solute) (fraction taken up by pure solvent-1.0)

- 1. X_{solvent} = mole fraction of the solvent
- 2. $X_{\text{solvent}} + X_{\text{solute1}} (+ X_{\text{solute2}} + X_{\text{solute3}}) = 1$
- This is done by blocking some of the solvent from escaping on the surface
- iii. For this we have to assume that the solute has no vapor pressure
- iv. A higher temperature is therefore needed to reach the vapor pressure of the atmosphere (boiling)
- 2. FPD: Freezing Point = Lower
 - a. Solute decreases the FP of the solvent
 - i. $\Delta T_{fp} = i m_{solute} K_{fp}$
 - = (effective molality) (solvent factor)
 - =(# of ions) (moles of solute) (solvent factor given or looked up)
 - =change in freezing temperature caused by the solute
 - 1. Subtract this number to the To_{fp(solvent)}
 - b. Solute increase the FP by lowering the vapor pressure (Raoult's Law)
 - i. $P_{\text{solvent}} = X_{\text{solvent}} P_{\text{solvent}}^{\text{o}}$

fraction of surface taken up by solvent = (fraction of surface taken up by solute) (fraction taken up by pure solvent-1.0)

- 1. X_{solvent} = mole fraction of the solvent
- 2. $X_{\text{solvent}} + X_{\text{solute1}} (+ X_{\text{solute2}} + X_{\text{solute3}}) = 1$
- 3. Osmotic Pressure
 - a. (osmotic pressure, π)V = nRT
 - b. $\pi = \frac{n}{v}RT = \left(\text{effective molarity in } \frac{mcl}{L}\right)RT$
 - c. $\pi = t \left(\text{molarity in } \frac{\text{mol}}{L} \right) \text{RT}$